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Supplementary materials 

Topological statistics of networks (excerpt from [14])  
The topological analysis of the networks provides quantitative insight into their basic 
organization. Four topological statistics of particular interest in network analysis are:  
 
(1) Average degree (K). The degree of a node is the number of links that this node has 
with other nodes. The average degree of the whole network is the average of the degrees 
of all its individual nodes.  
 
(2) Clustering coefficient (C). This is defined as the ratio of the number of existing links 
between a node’s neighbors and the maximum possible number of links between them 
(similar to an odds ratio). The clustering coefficient of a network is the average of all its 
individual coefficients. This statistic can be used to determine the completeness of the 
network.  
 
(3) Characteristic path length (L). The graph theoretical distance between two nodes is 
the minimum number of edges that is necessary to traverse from one node to the other. 
The characteristic path length of a network is the average of these minimum distances. It 
gives a measure of how close nodes are connected within the network.  
 
(4) Diameter (D). The diameter of a network is the longest graph theoretical distance 
between any two nodes in the graph. Table 1c explains, in detail, the formulas that are 
used to calculate these statistics. 
 
Until recently, classical random network theory was used to model complex networks. 
This was introduced by Erdös and Rényi. It assumes that any two nodes in the network 
are connected with random probability p and the degrees of the nodes follow a Poisson 
distribution, which has a strong peak at the average degree, K. Most random networks are 
highly homogenous, in that most nodes have the same number of links (degree), ki ≈ K, 
where ki is the degree of the ith node. The chance of having nodes with k links falls off 
exponentially for large k (i.e. P(k) ≈ e-k), meaning that it is very unlikely that there will be 
any nodes of degree significantly larger than average. 
 
To explain the heterogeneous nature of complex networks, Barabási and colleagues 
recently proposed a “scale-free” model in which the degree distribution in many large 
networks follows a power-law (P(k) ≈ k-r). A remarkable point about this distribution is 
that most of the nodes within these networks have very few links, with only a few of 
them (hubs) being highly connected. Many aspects of genomic biology have such a scale-
free structure. Concurrently, Watts & Strogatz found that many networks can also be 
described as having a “small-world” property, i.e. they are defined as being both highly 
clustered and containing small characteristic path lengths (large C and small L).  
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Calculation of likelihood ratios 
Jansen et al created a set of gold standard positives (truly interacting proteins) and a set of 
gold standard negatives (truly non-interacting proteins) for the prediction of interactions 
[43]. The likelihood ratio L for a certain feature f (e.g. two genes being co-regulated) is 
then defined as 
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where P represents the total number of gold standard positives. N represents the total 
number of gold standard negatives. TP is the number of true positives (i.e. protein pairs 
overlapping with the gold standard positives). FP is the number of false positives (i.e. 
protein pairs overlapping with the gold standard negatives).  
 
The significance of a certain likelihood ratio value can be estimated using the hyper-
geometric distribution: 
 
Suppose that the total sample space is N. In the first round, a sample of size S1 is 
randomly selected without replacement from N. Then, the entire initial sample (S1) is 
subsequently returned to the sample space. In the second round, another sample of size S2 
is randomly selected without replacement from N. The size of the overlap (denoted as i) 
between the two samples (S1 and S2) is a hyper-geometric random variable. The 
probability of observing an overlap of a given size X or greater is calculated by the 
formula: 
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To calculate the statistical significance of the overlap between the gold-standard positives 
and our predictions, we first need to determine the total sample space (N). Because there 
are about 6000 yeast proteins, the total number of possible interacting pairs is 1.8x107 
(6000x6000/2 = 1.8x107). Therefore, the sample space (N) is 1.8x107; S1 = 8250; S2 = 
23295; X = 7889. Please note that the same likelihood ratio may correspond to different 
significance values, because the likelihood ratio only depends on the ratio of TP/FP, but 
the P-value depends on the actual values of TP and FP. 

All networks are significantly related 
As discussed in the main text, we first used Pearson correlation coefficient to measure the 
association between different networks. The results show that most of the networks are, 
in fact, closely related. However, one problem with correlation coefficient is that it takes 
into account all pairs of proteins within the whole network. However, since the majority 
of pairs have a distance larger than the diameter, the coefficient actually measures the 
correlation between distant pairs. Supplementary Table 1A shows that all networks are 
significantly related (P values are all smaller than 10-4), although the specific correlations 
are not very significant. 
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In total, we used seven different methods to measure the association between networks: 

1. Cramer’s V (V).  
We divided all pairs of proteins in a network into three bins: 1) connected pairs; 2) close 
pairs (distance=2); 3) distant pairs (distance≥3). The χ2 statistics were calculated on the 
3x3 contingency table between any two networks. 
 
The formula for Cramer’s V is 

2

min( 1, 1)
V

N I J
χ

=
− −

 

 
where I and J are the numbers of rows and columns (in our case, I = J = 3), and N is the 
total number of gene pairs. Cramer’s V lies between zero and one inclusive, equals zero 
when there is no association, and equals one when the association is perfect. 

2. Pearson correlation coefficient (CC) 
Given two random variables, X and Y, the Pearson correlation coefficient CC(X; Y) is 
calculated by the formula: 
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where X records the distances for all protein pairs in one network. Y records the distances 
for the corresponding pairs in another network. We only include protein pairs that show 
up in both networks for this calculation. 
 
The Pearson correlation coefficient lies between -1 and 1. 

3. Mutual information (I) 
Given two random variables, X and Y, the Mutual Information I(X; Y) between them 
measures how much information does one variable conveys about the other one. It is 
defined as the relative entropy (or Kullback-Leibler distance) between the joint 
distribution and the product distribution of X and Y, that is: 
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where P(x, y) indicates the joint distribution of X and Y and P(x) and P(y) their marginal 
distributions. It is easy to prove that: 

I(X; Y) = H(X) − H(X|Y) = H(Y ) − H(Y |X) = I(Y ;X) 
where H(X) and H(Y) are the entropies of X and Y, and H(X| Y) and H(Y| X) are the 
conditional entropies of X given Y and Y given X respectively. This states that the 
information that Y conveys about X is the reduction in uncertainty about X due to the 
knowledge of Y (and vice-versa). 
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4. Contingency coefficient (C) 
The formula for C is 
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It lies between zero and one. But it will never be equal to one. 

5. Association score (A) 
Two proteins are defined as “associated” if their distance is smaller than or equal to 2. 
Given two networks, the fraction of associated pairs in one network that are also 
associated in the other was calculated. Then, we also calculated the random expectation. 
The association score is just the ratio of the observed fraction over the random 
expectation. 

6. Pearson correlation coefficient on binned data (Binned CC) 
We calculated Pearson correlation coefficients between networks using the binned data 
that were produced when we calculated Cramer’s V. 

7. Mutual information on binned data (Binned I) 
We calculated mutual information between networks using the binned data that were 
produced when we calculated Cramer’s V. 
 
All methods produce similar results as indicated by their correlations with Cramer’s V 
used in the main text (see supplementary Table 1B). 

Expectation of the essentiality of composite hubs 
We use “h1” and “h2” to denote hubs in two networks and use “e” to denote essential 
genes. P(e) = 0.2 for there are about 1000 essential genes in yeast genome (~6000 genes). 
Because we define hubs as the top 20% of the nodes with the highest degrees, P(h1) = 
P(h2) = 0.2. Since we know that hubs tend to be essential genes, let us suppose P(e|h1) = 
P(e|h2) = 0.4 (the fraction of essential hubs in the interaction network is about 40%).  
 
Then: 
P(h1|e) = P(e|h1)P(h1)/P(e) = 0.4 * 0.2 / 0.2 = 0.4 
P(h2|e) = P(e|h2)P(h2)/P(e) = 0.4 * 0.2 / 0.2 = 0.4 
P(h1&h2|e) = P(h1|e)P(h2|e) = 0.4 * 0.4 = 0.16 
P(h1|~e) = P(~e|h1)P(h1)/P(~e) = (1-0.4) * 0.2 / (1-0.2) = 0.15 
P(h2|~e) = P(~e|h2)P(h2)/P(~e) = (1-0.4) * 0.2 / (1-0.2) = 0.15 
P(h1&h2|~e) = P(h1|~e)P(h2|~e) = 0.15 * 0.15 = 0.0225 
P(h1&h2) = P(h1&h2|e)P(e) + P(h1&h2|~e)P(~e) = 0.16*0.2+0.0225*(1-0.2) = 0.05 
P(e|h1&h2) = P(h1&h2|e)P(e)/P(h1&h2) = 0.16 * 0.2 / 0.05 = 0.64 
 
Therefore, P(e|h1&h2) > P(e|h1) = P(e|h2), i.e. composite hubs are more likely to be 
essential than normal hubs, simply because of the fact that normal hubs tend to be 
essential genes. 
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Expectation of the overlap of hubs between scale-free networks 
Above, we have shown that P(h1&h2) = 0.05, given the fact that hubs in scale-free 
networks tend to be essential. If we assume that this were not the case, then 
 
P’(h1&h2) = P(h1) * P(h2) = 0.2 * 0.2 = 0.04 < P(h1&h2). 
 
Therefore, hubs in scale-free networks should tend to overlap just because of their 
essentiality. 
 
Defining hubs with different cutoffs does not affect the results 
In order to determine whether different definitions of hubs using different cutoffs will 
affect the final results, we repeated all calculations in Figures 2 and 3 using different 
cutoffs. As shown in SupFig. 3A, even though there is some fluctuation, the overlaps 
between the regulatory networks and action networks (particularly interaction and 
expression networks) are always very similar to random expectation (P values > 0.05), 
whereas, the overlaps between action networks are always significantly higher than 
random expectation (P values < 0.001) when the cutoff is smaller than 70%. 
 
SupFig 3B clearly shows that hubs in different network have a strong tendency to be 
essential (except those in target population). Furthermore, tri-hubs and bi-hubs have even 
higher tendencies than normal hubs at all cutoffs. The fluctuation at the low cutoff end is 
due to the limited statistics, i.e., there are only few tri-hubs at those cutoffs. 
 
Regulator bridges generate time-delayed expression 
relationships 
Bridge motif: 
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We have constructed the following approximate chemical kinetic model for the bridge 
motif (see above) in the transcriptional regulatory network: 
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In this model, the first transcription factor TF1 binds to the first DNA motif and activates 
the transcription of the first target 1

mRNAT .  At the same time, TF1 binds to a second DNA 
motif and activates the transcription of another transcription factor TF2.  After translation 
and translocation, the TF2 protein then binds to a third DNA motif and activates the 
transcription of the second target 2

mRNAT .  We assume that the binding between TF and the 
corresponding DNA motif is fast and reversible, with an association constant of KA.  k1 is 
the rate constant for transcription, k2 is the combined rate constant for translation and 
translocation.  We assume that KA and k1 are the same for both transcription factors.  NTP, 
PPi, and aa-tRNA represent nucleoside triphosphate, pyrophosphate, and aminoacyl-
tRNA, respectively. 
 
The above model corresponds to the following set of equations: 
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Here we use [A] to denote the concentration of molecular species A.  We assume that 
there is one copy of each DNA motif in the genome, so that the concentration for each 
DNA motif is the same as the concentration of DNA molecules in the nucleus, cD.  We 
also assume that the concentrations of NTPs are roughly constant, so that the rate of 
transcription only depends on TF binding to DNA motif.  Similarly, we assume that the 
concentrations of aa-tRNAs are roughly constant, so that the rate of translation only 
depends on the concentration of mRNA.  Furthermore, we initialize the parameters in the 
following way: 
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These parameters can be understood in the following intuitive way.  When t<0, TF1 is 
absent in the nucleus.  When t≥0, the number of TF1 molecules in the nucleus rises to a 
constant of 1000 per DNA molecule.  The association constant between TF and the 
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corresponding DNA motif is defined such that there need to be at least 100 free TF 
molecules per DNA molecule to ensure that the DNA motif is bound to TF half the time.  
Furthermore, we assume that the combined rate constant of translation and translocation 
is ten times slower than the rate constant of transcription. 
 
We numerically simulate the time evolution of the concentration of two target mRNAs: 

1
mRNAT , and 2

mRNAT  (Supplementary Fig.9).  It is clear from the simulation that the two 
targets have a time-delayed expression relationship. 
 
Our model can be improved by incorporating additional processes such as mRNA and 
protein degradation, and by considering stochastic gene expression.  However, the 
conclusion that the two targets have a time-delayed expression relationship will still hold. 

Disconnected pairs in the metabolic network tend to have 
expression relationships other than co-expression 
We obtained expression profiles of yeast genes through two complete cell cycles [6]. 
Between the expression profiles of pairs of genes, we used a local clustering method to 
calculate four types of temporal relationships: correlated (i.e. co-expressed), time-shifted, 
inverted, and inverted time-shifted [45]. To find these relationships, expression levels 
must be assessed over a time-course, with many measurements, at small and uniform 
intervals. Most available datasets do not satisfy these conditions, being only suitable for 
simple correlation calculations (i.e., co-expression); thus, we can only conduct detailed 
analysis on the cell-cycle datasets [6, 34]. 
 
We examined the occurrences of co-expression and shifted motifs using three cell-cycle 
datasets [34]:  (1) Alpha (2)Cdc-15 (3) Elutriation. Supplementary Figure 10 shows that 
the results in all three datasets are very similar to those in the main text, i.e. disconnected 
pairs in the metabolic network tend to have expression relationships other than co-
expression. However, similar results could not be found in the interaction dataset (see 
supplementary Figure 11). 
 
 
Defining expression networks with different cutoffs does not 
affect the results 
 
In order to determine whether different definitions of expression networks using different 
cutoffs will affect the final results, we repeated all calculations in Figures 3, 4 and 5 using 
different cutoffs. Supplementary Figures 12 and 13 clearly shows that all results remain 
the same. 
 
P values by cumulative binomial distribution 
 
Most P values in our analysis measure whether the difference is significant between the 
testing and control groups. They are calculated using the cumulative binomial distribution: 
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where N is the total number of possible gene pairs in the data; co is the number of 
observed pairs with a specific relationship in the testing group; and p is the probability of 
finding a gene pair with the same relationship in the control group. In this manner, we are 
testing whether gene pairs with a specific relationship are over-represented as compared 
to the control group. If they are under-represented, then P(c < co) = 1 – P(c ≥ co).  
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Tables 

Supplementary Table 1. 
 
A. P values for Pearson correlation coefficients 
 

CC P values
Met-Int 1.25E-01 2.20E-16

Met-Reg 1.70E-02 1.60E-05
Met-Exp 2.50E-02 1.80E-15
Reg-Int 5.50E-02 2.20E-16

Reg-Exp 5.50E-02 2.20E-16
Int-Exp 4.20E-02 2.20E-16  

 
B. Correlation coefficients between V and other measurements 
 

V CC I C A Binned CC Binned I
Met-Int 8.57E-02 1.25E-01 4.87E-02 1.46E-01 2.70E+00 2.96E-01 4.06E-02

Met-Reg 4.13E-03 1.70E-02 9.00E-03 8.20E-03 1.62E+00 8.68E-02 4.73E-03
Met-Exp 2.44E-03 2.50E-02 6.58E-03 4.85E-03 1.45E+00 6.56E-02 2.67E-03
Reg-Int 3.52E-03 5.50E-02 5.08E-03 6.99E-03 1.71E+00 5.29E-02 2.60E-03

Reg-Exp 2.59E-03 5.50E-02 4.40E-03 5.16E-03 1.75E+00 6.18E-02 2.53E-03
Int-Exp 6.33E-03 4.20E-02 3.71E-03 1.25E-02 1.78E+00 5.72E-02 2.13E-03

correlation 1.00E+00 9.14E-01 9.92E-01 1.00E+00 9.57E-01 9.91E-01 9.97E-01  
 

Supplementary Table 2. TFs regulating the same genes tend to 
interact and co-express with each other 

A. Likelihood ratios for TFs in the same motif to interact 
 

Motifs # of pairs # of TPs # of FPs Likelihood ratios
All 4672 100 297 39.15 

MIM 601 14 8 203.50 
FFL 246 13 26 58.14 

 

B. Likelihood ratios for TFs in the same motif to co-express 
 

Motifs # of pairs # of TPs # of FPs Likelihood ratios
All 4534 17 918 2.54 

MIM 601 5 110 6.24 
FFL 240 2 39 7.03 
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Supplementary Table 3. Bridges are enriched in most disconnected enzymes 
with different distances in the metabolic network  

Distance 1 2 3 4 5 6 7 8 9
P-values# 0.1 0 5.48E-11 1.89E-06 0 0 1.92E-13 2.13E-12 0.03
Distance 10 11 12 13 14 15 16 17 Overall*
P-values# 0.05 0.002 0.38 0.005 0.02 0.14 0.23 0.05 0  

 
#: P-values measure the significance of the difference between the observed fraction of 
bridges and the random expectation at different distances. 
*: The P-value for overall measures the significance of the difference between the 
observed fraction of bridges and the random expectation for all disconnected enzyme 
pairs. 
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Figure captions 
Supplementary Figure 1. Essentiality of bi-hubs. We created randomized networks 
where the tendency for hubs to be essential is conserved, and compared observed 
essentiality enrichment in bi-hubs with calculations based on the randomized networks. 
All other calculations are the same as in Figure 2B. 
 
Supplementary Figure 2. Fold enrichments of hub overlaps (O) between two 
networks relative to random expectation. We created randomized networks where the 
tendency for hubs to be essential is conserved, and compared observed essentiality 
enrichment in composite-hubs with calculations based on the randomized networks. All 
other calculations are the same as in Figure 3B. 
 
Supplementary Figure 3. We recalculated Figure 3B and Figure2 using different 
percentile cutoffs for defining hubs. Generally speaking, results are not affected by the 
specific definition of hubs. Some of the results at extremely low percentiles (< 10%) are 
not very stable, because there are few hubs defined under these percentile cutoffs. 
 
Supplementary Figure 4. Functional composition of different networks and their 
overlap. Clearly, all four networks have similar functional compositions, except that the 
regulatory network is enriched in class 4 proteins (Class 4: Transcription) and the 
metabolic network is enriched in class 1 proteins (Class 1: Metabolism). Both exceptions 
are readily understandable based on the nature of the networks. Furthermore, the 
functional composition of the overlapping proteins between the four networks is really 
similar to the random expectation. The P value measures the statistical significance of the 
difference between a certain distribution with the random expectation using a K-S test. 
All P values are bigger than 0.05, confirming that all functional compositions are similar 
to the random expectation. 
 
Supplementary Figure 5. Changes of L in the four networks when hubs in one of 
them are removed. (A). Hubs in the metabolic network are removed. It is clear that, as 
more and more hubs in the metabolic network are removed, the L’s of interaction and 
expression networks go down very quickly (i.e., the networks begin to collapse), as 
compared to that of the regulatory network, which remains around 6.3. (B) Hubs in the 
regulatory network are removed. As more and more hubs are removed, the L of the 
regulatory network goes down very quickly, whereas the L’s of all three action networks 
stay stable. These results confirms our conclusion that separation of hubs between 
regulatory and action networks provides stability to the cell. 
 
Supplementary Figure 6A. Examples of triangles. In all panels of supplementary 
Figures 6 and 7, circles represent TFs, and rectangles represent non-TF genes. (I) A 
schematic of a triangle. The schematic shows that a triangle consists of three proteins: the 
common regulator TF regulates both P1 and P2. In our calculations, we examined the 
occurrences of triangles between not only adjacent pairs in action networks, but also 
distant pairs (distance = k). In all panels of supplementary Figures 6 and 7, P1 and P2 
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have a distance of k in a certain action network. In all examples in supplementary Figures 
6&7, k is equal to one. (II) A triangle in Met-Reg. ADE5, 7 and ADE8 are two enzymes 
in the purine biosynthesis pathway.  ADE5,7 turns 5-phosphoribosylamine into 5'-
phosphoribosylglycinamide (GAR), which is subsequently turned into 5'-phosphoribosyl-
N-formylglycinamide by ADE8. These two enzymes are co-regulated by BAS1. (III) A 
triangle in Int-Reg. SCC1 and SCC3 are two subunits of the cohesin complex. They are 
co-regulated by MBP1. In supplementary Figures 6A(III), B(III) and C(III), the dotted 
lines indicate the interaction relationship, and the dotted rectangles represent interaction 
partners of the two proteins. (IV) A triangle in Exp-Reg. MET10 and MET14 are two 
enzymes involved in methionine metabolism. The Pearson correlation coefficient 
between their expression profiles is 0.84. They are co-regulated by MET28. In 
supplementary Figures 6A(IV), B(IV) and C(IV), the dotted lines indicate the co-
expression relationship, and the dotted rectangles represent genes that are co-expressed 
with the two genes. 
 
Supplementary Figure 6B. Examples of trusses. (I) A schematic of a truss. The 
schematic shows that a truss consists of four proteins: T1 regulates T2, P1 and P2; T2 
regulates P1 and P2.  (II) A truss in Met-Reg. GLT1 and GLN1 are two enzymes involved 
in glutamate metabolism.  GLT1 turns 2-oxoglutarate into L-glutamate, which is 
subsequently turned into L-glutamine by GLN1. These two enzymes are co-regulated by 
GLN3 and GCN4. GLN3 also regulates GCN4. (III) A truss in Int-Reg. CLN1 and CLN2 
are two subunits of the CDC28-associated complex. They are co-regulated by MBP1 and 
SWI4. MBP1 also regulates SWI4. (IV) A truss in Exp-Reg. The expression of HSP78 and 
HSP82 are both induced in heat-shock response. The Pearson correlation coefficient 
between their expression profiles is 0.86. They are co-regulated by SKN7 and YAP1. 
SKN7 also regulates YAP1. 
 
Supplementary Figure 6C. Examples of bridges. (I) A schematic of a bridge. The 
schematic shows that a bridge consists of four proteins: T1 regulates T2 and P1; T2 
regulates P2. (II) A bridge in Met-Reg. FOL2 and PHO8 are two enzymes involved in the 
folate biosynthesis pathway.  FOL2 turns 2,5-diamino-6-(5'-triphosphoryl-3',4'-
trihydroxy-2'-oxopentyl)- amino-4-oxopyrimidine into  6-(l-erythro-1,2-
Dihydroxypropyl 3-triphosphate)-7,8-dihydropterin, which is subsequently turned into 
dihydroneopterin  by PHO8. FOL2 is regulated by YOX1. PHO8 is regulated by PHO4. 
YOX1 also regulates PHO4. (III) A bridge in Int-Reg. SPC2 and SEC11 are two subunits 
of the signal peptidase complex. SPC2 and SEC11 are regulated by ROX1 and YAP6, 
respectively. ROX1 also regulates YAP6. (IV) A bridge in Exp-Reg. MET10 and MET20 
are two enzymes involved in methionine metabolism. The Pearson correlation coefficient 
between their expression profiles is 0.87. MET10 is regulated by CBF1. MET20 is 
regulated by REB1. CBF1 also regulates REB1. 
 
Supplementary Figure 7. Examples of composite motifs in the combined network 
of Met-Exp. (A) A schematic of composite motifs in Met-Exp. The schematic shows that 
composite motifs in Met-Exp consist of two proteins: P1 and P2. P1 and P2 have a 
distance of k in the metabolic network. They also have an expression relationship (co-
expressed or others) in the expression network. (B) A co-expression motif in Met-Exp. 
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ACS2 and ERG10 are two enzymes involved in pyruvate metabolism. ACS2 turns 
acetyladenylate into acetyl-CoA, which is subsequently turned into acetoacetyl-CoA by 
ERG10. ACS2 and ERG10 have a co-expression relationship (the local clustering score is 
14.6). (C) A shifted motif in Met-Exp. HEM13 and HEM14 are two enzymes involved in 
porphyrin and chlorophyll metabolism. HEM13 turns coproporphyrinogen III into 
protoporphyrinogen IX, which is subsequently turned into protoporphyrin IX by ERG10. 
HEM13 and HEM14 have a time-shifted relationship (the local clustering score is 14.9). 
| | indicates a time-shift relationship. 
 
 
Supplementary Figure 8. Fraction (F) of all P1-P2 pairs at distance k=1 in a given 
highly combined network in a particular composite motif.  
 
Supplementary Figure 9. Simulated time evolution of the concentration of two 
target mRNAs: (A) 1

mRNAT , and (B) 2
mRNAT .  X-axis represents time multiplied by the rate 

constant k1.  Y-axis represents the concentration of each molecular species divided by cD.  
Both axes represent dimensionless quantities. 
 
Supplementary Figure 10. Fraction (F) of all P1-P2 pairs at distance k in Met-Exp 
in a particular composite motif using three different cell-cycle datasets: (1) Alpha (2)Cdc-
15 (3) Elutriation.  
 
Supplementary Figure 11. Fraction (F) of all P1-P2 pairs at distance k in Int-Exp in 
a particular composite motif. 
 
Supplementary Figure 12. Fold enrichments of hub overlaps (O) between two 
networks relative to random expectation. The expression networks in different panels are 
defined by different cutoffs. Exp5: the cutoff is 0.5; Exp6: the cutoff is 0.6; Exp7: the 
cutoff is 0.7; Exp85: the cutoff is 0.85. 
 
Supplementary Figure 13. Fraction (F) of all P1-P2 pairs at distance k in a given 
combined network in a particular composite motif. 
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